Подписка на новости

* Поля, обязательные к заполнению
Нажимая на кнопку «Подписка на новости» Вы даёте свое согласие автономной некоммерческой организации «Центр развития филантропии ‘’Сопричастность’’» (127055, Москва, ул. Новослободская, 62, корпус 19) на обработку (сбор, хранение), в том числе автоматизированную, своих персональных данных в соответствии с Федеральным законом от 27.07.2006 № 152-ФЗ «О персональных данных». Указанные мною персональные данные предоставляются в целях полного доступа к функционалу сайта https://www.b-soc.ru и осуществления деятельности в соответствии с Уставом Центра развития филантропии «Сопричастность», а также в целях информирования о мероприятиях, программах и проектах, разрабатываемых и реализуемых некоммерческим негосударственным объединением «Бизнес и Общество» и Центром развития филантропии «Сопричастность». Персональные данные собираются, обрабатываются и хранятся до момента ликвидации АНО Центра развития филантропии «Сопричастность» либо до получения от Пользователя заявления об отзыве Согласия на обработку персональных данных. Заявление пользователя об отзыве согласия на обработку персональных данных направляется в письменном виде по адресу: info@b-soc.ru. С политикой обработки персональных данных ознакомлен.

Yandex.Cloud поможет российским ученым разработать нейросеть для оценки здоровья Байкала

123

Объединённая команда учёных и разработчиков создаст нейросетевой алгоритм для мониторинга экосистемы Байкала. Алгоритм будет автоматически анализировать пробы байкальской воды, распознавать и классифицировать содержащиеся в ней микроорганизмы. Такой анализ облегчит работу учёных, которым сейчас приходится различать более 400 видов байкальского планктона и систематизировать данные вручную.

Новое технологическое решение будет использоваться в проекте экологического мониторинга Байкала «Точка №1». Проект заключается в регулярном анализе фито- и зоопланктона в воде озера. Наблюдения показывают, как развивается экосистема Байкала и как на неё влияет изменение климата на планете. Алгоритм позволит не только автоматизировать анализ планктона, но и масштабировать проект, открыв новые точки наблюдения.

В работе над созданием алгоритма принимают участие специалисты НИИ биологии Иркутского государственного университета, разработчики моделей искусственного интеллекта для изучения морских экосистем MaritimeAI, команда облачной платформы Yandex.Cloud и фонда поддержки прикладных экологических разработок и исследований «Озеро Байкал».

Для обучения алгоритма учёные из НИИ биологии ИГУ предоставили более 1000 снимков каждого вида планктона. На основе этих данных команда Maritime AI создаст механизм классификации видов планктона с использованием Yandex DataSphere — сервиса Yandex.Cloud для анализа данных, разработки и эксплуатации моделей машинного обучения. Изображения микроорганизмов будут передаваться в Yandex.Cloud прямо с микроскопов лаборатории НИИ биологии ИГУ, и алгоритм будет автоматически определять видовую принадлежность планктонных частиц. Предполагается, что алгоритм будет определять до 99% всех видов планктона, а специалисты института биологии будут контролировать качество его работы. Рабочий прототип системы будет представлен уже этим летом.

Проект «Точка №1» появился в 1945 году и входит в Книгу рекордов России как самый длительный проект регулярного экологического мониторинга в истории науки. На протяжении более чем 75 лет учёные каждые 7–10 дней берут пробы воды с глубин от 0 до 800 метров. Накопленные данные позволяют следить за состоянием экосистемы Байкала и прогнозировать её развитие.

Почему ученые и разработчики объединили усилия?

В последние годы проект «Точка №1» находился под угрозой закрытия. Методика распознавания данных, которую сейчас применяют в проекте, технологически устарела. Ученые определяют виды микроорганизмов с использованием классических методов микроскопии. Для этого специалисту необходимо научиться различать более 400 видов фито- и зоопланктона, подготовка такого  специалиста занимает более 10 лет непрерывной практики.  Для поддержания  проекта потребовалось бы несколько десятков специалистов высокого уровня, согласных при этом на выполнение рутинных операций.  Для сохранения и развития проекта ученые НИИ Биологии ИГУ и фонда «Озеро Байкал» сформулировали цель — создать интеллектуальную систему цифровой поддержки процесса анализа проб с использованием технологии искусственного интеллекта, которую можно обучить распознаванию микроорганизмов, чтобы автоматизировать основной объем рутинной работы ученых.

Практическая реализация задачи упиралась в барьер — создание такой нейросети с нуля требовало технической экспертизы и ИТ-инфраструктуры, которых не было у НИИ биологии ИГУ.

Эксперты в области ИИ платформы Yandex.Cloud предложили использовать в проекте облачные вычислительные мощности, а также сервис для ML-разработки DataSphere, который ускоряет разработку моделей искусственного интеллекта. Также команда Yandex.Cloud помогла привлечь в проект экспертов по созданию ML-алгоритмов для изучения морских экосистем — компанию Maritime AI.

Алексей Башкеев, руководитель платформы Yandex.Cloud: «Сейчас учёные определяют виды микроорганизмов с использованием классических методов микроскопии. Для этого им необходимо научиться различать более 400 форм фито- и зоопланктона, на это уходит более 10 лет почти непрерывной работы. В Yandex.Cloud мы решили помочь учёным применить новый сервис Yandex DataSphere, чтобы облегчить их работу и вывести уникальный проект сбора и анализа данных о стоянии Байкала на новый уровень».

Максим Тимофеев, доктор биологических наук, директор НИИ биологии ИГУ: «Сообщество фито- и зоопланктона является по сути фундаментом всей экосистемы Байкала. Понимая процессы в этом фундаменте, их динамику, мы можем делать прогнозы по векторам  развития всей экосистемы озера. Мониторинговый проект „Точка №1“ уникален тем, что позволяет сделать анализ на основе долговременных и непрерывных рядов наблюдений, накопленных за 75 лет. Партнёрство с Yandex.Cloud позволит решить важную задачу по переводу мониторинга с технологических подходов XX века на парадигму XXI века: с ручного анализа проб на методы с использованием машинного распознавания и обучения. При этом мы сможем не только сохранить преемственность всей многолетней программы, но и масштабировать проект, запустив новые точки наблюдений».

Анастасия Цветкова, генеральный директор фонда поддержки прикладных экологических разработок и исследований «Озеро Байкал»: «Совместная работа фонда, Yandex.Cloud и других партнёров отвечает 17-й цели устойчивого развития ООН, которая обращает внимание на ценность многостороннего сотрудничества, в том числе путём мобилизации ресурсов, технологий и знаний. На протяжении пяти лет фонд „Озеро Байкал“ поддерживает проект долговременного мониторинга Байкала „Точка №1“ грантами. В 2016 году мы помогли избежать закрытия программы и с тех пор поддерживаем её всестороннее развитие. Подключение к проекту Yandex.Cloud открывает для мониторинга новые перспективы в области внедрения технологий машинного обучения для регулярного анализа проб фито- и зоопланктона озера Байкал. Это сотрудничество — прямое свидетельство того, как бизнес, наука и общество могут сотрудничать в реализации ESG-повестки».

Павел Голубев, CEO Maritime AI: «Команда MaritimeAI объединяет в себе экспертизу в области геологии и океанологии в совокупности с последними достижениями в сфере машинного обучения и искусственного интеллекта. Для нас этот проект особенный по многим причинам. Во-первых, это возможность применить наши знания и наш опыт для мониторинга крупнейшего на планете пресного водоёма. Во-вторых, в отличие от наших предыдущих проектов по автоматизации здесь мы имеем дело с уникальным научным процессом наблюдения длиной в 75 лет. В нашей команде есть учёные-океанологи и генетики, и мы отлично понимаем важность сохранения самого процесса наблюдения при его цифровизации. Наконец, для нас важно то, что этот проект, в отличие от наших предыдущих, является не индустриальным, а экологическим. Одним из ключевых факторов успеха проекта является скорость его реализации. Именно с этим нам помогут возможности Yandex DataSphere. Мы используем высокопроизводительные виртуальные машины с 4-8 GPU, благодаря чему время обучения алгоритмов сократилось с часов до минут. Также мы используем в процессе обучения алгоритма, а именно в разметке данных, сервис Яндекс.Толока».

Источник — пресс-служба фонда «Озеро Байкал»

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: